

Westar Energy Lawrence Energy Center

PRB Plant Of The Year

2006

THE OWNER

Lawrence Energy Center

- ➢ 600 MW Base Loaded PRB Coal Facility
- 117 Employees
- First Unit On-Line In 1938; Unit 1 & 2 Retired
- Unit 3 60 MW Built In 1955
- ➤ Unit 4 130 MW Built In 1960
- Unit 5 420 MW Built In 1971

Lawrence Energy Center

Pollution Control Equipment
 L5 Low NOx Burners
 L4 & L5 Wet Flue Gas Scrubbers
 L3 Electrostatic Precipitator

➢ Nox (lb/mmbtu)	Sox (Ib/mmbtu)
≻L3 = .258	.541
≻L4 = .380	.066
≻L5 = .193	.088

2006 Milestones≻Net Generation – 3,250,000 MWHRS

- ➤ 18,172 Train Cars Unloaded
- > 1,925,836 Tons Of Coal Burned
- Current Coal Inventory 21 Days
- SHA Recordable Incident Rate 1.74

Lost Time Record

LEC reached 1,000,000 Manhours Without a Lost Time Accident in February, 2007

Westar Energy.

THIS PLANT HAS WORKED 1.043100MANHOURS WITHOUT A LOSTTIME ACCIDENT PREVIOUS RECORD 601.100 INCIDENT RATE RECORD 0.86

PRB Conversion

1999 - Present

PRB Conversion Challenges

- Lower BTU Content requires a higher material handling rate
- Fuel is more volatile requiring improved fire protection
- Fuel is dustier requiring Dust Control improvements and clean up challenges
- Ash content is higher causing increased slagging and fouling

Unit 3 Modifications \$600,000

Boiler Water Cannons

➤ control Waterwall Slagging

> Additional Sootblowers

➤control increased fouling

Loose Fill Rotary Air Heater Baskets

reduce pressure drop from increased fouling

Electrostatic Precipitator Acoustic Horns
handle increased ash load

Unit 3 Modifications \$600,000

Coal Bunker Mods to Round Corners & Ledges

➢ prevent hideout

Coal Bunker CO Monitors

➤early fire detection

L3/L4 Bunker Room Washdown System (Pending) Faid clean up

Bunker Room Heat (Pending) Prevent freezing during washdown

Unit 4 Modifications \$1,300,000

Economizer Drag Chain

handle increased ash

> Additional Sootblowers

➤ convection surface cleaning

Loose Fill Rotary Air Heater Baskets

reduce pressure drop from increased fouling

Bare Tube Design Scrubber Reheater

>decrease pressure drop

Unit 4 Modifications \$1,300,000

Furnace Exit Gas Temp Probe

➢ provide feedback for sootblowing in the furnace

Coal Bunker CO Monitors

➤early fire detection

- Bunker Silo Washdown System With F500 Injection
 Fire protection
- Coal Bunker Mods to Round Corners & Ledges
 Prevent hideout

Unit 5 Modifications \$11,000,000

Bare Tube/Straight Thru Economizer

reduce pressure drop

Modified Low Temp Superheater

➤added stainless steel sections to decrease fouling

Modified Boiler Reheater

➤added stainless to decrease fouling

Bare Tube Design Scrubber Reheater

reduce pressure drop

Unit 5 Modifications \$11,000,000

Economizer Drag Chain

handle increased ash

> Additional Sootblowers

➤ convection surface cleaning

Loose Fill Rotary Air Heater Baskets

reduce pressure drop

Unit 5 Modifications

Furnace Exit Gas Temp Probes (2)

Provide feedback for furnace cleaning

Stack Silencer

➤ reduce noise from increased fan loading

Bunker Room Dust Collector with F500 Injection

➤ reduce dust

Unit 5 Modifications

>Bunker Room Wash Down System

≻clean up

Bunker Room Heat

➢ prevent freezing during washdown

>Bunker Silo Washdown with F500 Injection

≻Fire protection

Common Modifications \$9,500,000

- Coal Handling Capacity Increased From 450 TPH to 800 TPH
- Radial Stacker & Expanded the Coal Pile
- Upgraded all transfer points to Hood and Spoon Design – Dust control
- Railroad Track Extension

Common Modifications \$9,500,000

- Backup Bucket Conveyor
- New Fire Protection Panels
- Total Suspended Solids Chemical Control System

➤ capture coal pile runoff to river

> 2 Additional Sootblowing Air Compressors

Old Crusher 450 TPH

New Coal Crusher 800 TPH

Original Number 5 Conveyor 450 TPH

New Number 5 Conveyor

Manual Coal Tripper

New Coal Tripper

Radial Stacker

Dust Control & Fire Prevention

- Wash Conveyor System & Bunker Rooms Twice Daily
- Conveying Equipment Inspections Weekly
- Fire Extinguisher & Fire Hose Reel Inspections Monthly
- Fire Protection Panels Tested Bi-Annually

Dust Control & Fire Prevention

- Fire Deluge Systems Trip Tested Monthly
- Coal Bunkers Emptied Bi-Monthly
- Engineered Hoods & Spoons at Transfer Points
- Stilling Curtains Inside Load Chutes

ELECTRICAL UPGRADES

Positive Pressure Switchgear Building

New Square D Model 6 MCC With Load Center Drawout to Handle Increased Load

Square D Masterpact Breakers With Tie Breaker in Drawn Out Position

Typical Motor Control Center Bucket With Soft Start/Bypass Contactor and Cross The Line Starter

Telemecanique ® Altistart 48 Soft Start

Left - Cross The Line Starter With Overloads Right - Soft Start Bypass Contactor

Top Selector Switch Allows For Local or Remote Operation Lower Selector Switch Allows Operator To Select Soft Start Or The Cross The Line Starter

Typical Feeder Belt Frequency Drive Bucket With Remote Control From DCS Or Local Speed Control From Bucket - Flex 58 Series Drive

Typical Self-Cleaning Belt Magnet 2 Installed ahead of the Crusher and 1 after the Crusher

Conduit Seal Offs Depicting Transition from Class 2 Division 2 To Class 1 Division 1 Hazardous Location Below Grade

Class 1 Division 1 Rated Phone Installed in all Undergound Locations

Protectowire ® Cabinet , LEC 30 Zones

Typical Fire Detection Spot Heat Detector Intalled in all Transfer Points

Protectowire ® Linear Heat Detection Cable

Protectowire ® Linear Heat Detection Termination Box

Multiple Zone Deluge Valves

Operator Interface To Bailey DCS

Configuration Utilities Operations Displays COAL

TUESDRY APR 10,2007 15:12:31 COAL HANDLING BELT CTRL

1 2 3 5 6 7 9 10 14 16 17 18 19 20 21 22 23 25 27 31 32 99

А

Allen Bradley ® PLC With Wireless Data-linc ® Modem for Tripper Control

Riegl Model LD90 – 450 Laser Distance Meter in Hazardous Enclosure Measuring Tripper Position

Conspec ® CO Monitor 500 ppm Range Used Below Grade and In Coal Bunkers

Mounted in Top of Coal Bunkers – Conspec ® CO Monitor 500 ppm (Left) Siemens Milltronics Radar Level Transmitter (Right)

QUESTIONS?

